dsPIC Helper Library 1.0

Dean Ferreyra
dean@octw.com
http://www.bourbonstreetsoftware.com/

November 14, 2008

Contents

1 Introduction 2
2 Building From Sources 3
2.1 Library Types. o e 3
3 Boolean Type 4
3.1 Usage 4
4 Integer Types 5
4.1 Usage e 5
5 Interrupt Macros 6
5.1 Usage o o o e e 6
5.2 Macros. e e e 6
6 Low-level Instructions 8
6.1 Usage e 8
6.2 Macros. 8
7 X and Y Data Spaces 9
7.1 Usage e 9
7.2 Macros. o e e e 9
8 16-bit CRC-CCITT 10
8.1 Usage e 10
8.2 Functions 10
8.3 Example 11

Chapter 1

Introduction

The dsPIC Helper Library is a small collection of macros and functions written
in C that I have found useful while developing and prototyping Microchip dsPIC-
based embedded software. It includes a 16-bit CRC-CCITT implementation, a
stand-in for the missing <stdint.h> header file for defining types like int16_t,
a stand-in for the missing <stdbool.h> header file for defining the Boolean
type, and various low-level macros emitting special instructions, like CLRWDT to
clear the watchdog timer.

I have released this code under the GNU General Public License with the
hope that others might find it useful.

Chapter 2

Building From Sources

To build the dsPIC Helper Library, you need to have already installed the
Microchip MPLAB C30 cross-compiler. You also need a basic Unix-like build
environment with programs like Make and Sed. Under Windows I personally
install and use Cygwin.

To build the dsPIC Helper Library, first unpack the source tree. You can
do this with the following command:

$ tar -xzf dspic-helper-1.0-src.tgz

Next, change directory to the head of the source tree that was just unpacked
and run the make command:

$ cd dspic-helper-1.0
$ make

This should build the dsPIC Helper Library for the supported dsPIC mi-
crocontrollers. This includes the dsPIC30F6015, dsPIC30F6010A, and the
dsPIC30F6010, though you can easily modify the Makefile to build for other
targets as well.

2.1 Library Types

The build process actually builds two libraries for each microcontroller type; one
for the default code size, and one using the -mlarge-code option. The libraries
are built in separate directories named after the corresponding microcontroller
and which option was enabled. For example, for the dsPIC30F6015, the libraries
can be found here:

e src/30F6015/1libdspic-helper.a

e src/30F6015-large-code/libdspic-helper.a

Chapter 3

Boolean Type

The Microchip MPLAB C30 cross-compiler does not come with the C99 stan-
dard header <stdbool.h>. The dsPIC Helper Library provides the boolean.h
to take its place. It defines the type bool and the true and false manifest
constants.

3.1 Usage

To use these types, you can use the -I compiler option to add the dsPIC Helper
Library source directory to the compiler command line, and then include the
header file like so:

#include <boolean.h>

Chapter 4

Integer Types

The Microchip MPLAB C30 cross-compiler does not come with the C99 stan-
dard header <stdint.h>. The dsPIC Helper Library provides the inttypes.h
to take its place. It defines the following signed integer types:

e int8_t

e intl6_t

e int32_t

e int64_t

and the following unsigned integer types:

e uint8_t

e uintl6_t

e uint32_t

e uint64_t

It also defines the corresponding minimum and maximum limits, for example
INT16_MIN and INT16_MAX.

4.1 Usage

To use these types, you can use the -I compiler option to add the dsPIC Helper
Library source directory to the compiler command line, and then include the
header file like so:

#include <inttypes.h>

Chapter 5

Interrupt Macros

The dspic-utility.h header file defines a number of macros for manipulating
the interrupt priority level (IPL) of the microcontroller, and for using the DISI
instruction.

5.1 Usage

To use these macros, you can use the —I compiler option to add the dsPIC Helper
Library source directory to the compiler command line, and then include the
header file like so:

#include <dspic-utility.h>

5.2 Macros

CLIO) macro
This macro raises the IPL to 7, disabling all maskable interrupts. The previous
IPL is saved in a global variable for use by STI().

STI(O) macro

This macro restores the IPL to the value saved by the CLI() macro.

SET_CPU_IPL_MAX() macro
This macro raises the IPL to 7, disabling all maskable interrupts. Unlike CLI(),
the current IPL value is not saved.

DISI_SET(int n) macro

This macro emits the DISI instruction with the given count. This disables
interrupts for n 4+ 1 cycles.

DISI_MAXQ) macro

This macro emits the DISI instruction to disable interrupts for the maximum
number of cycles. This macro can be used with DISI_CLEAR() to disable inter-
rupts for a reasonably short, but unknown number of instructions.

DISI_CLEARQ) macro

This macro clears the DISICNT register to re-enable interrupts after a call to
DISI_MAX() or DISI_SETQ).

Chapter 6

Low-level Instructions

The dspic-utility.h header file defines a number of macros for emitting spe-
cial instructions, like CLRWDT to clear the watchdog timer.

6.1 Usage

To use these macros, you can use the —I compiler option to add the dsPIC Helper
Library source directory to the compiler command line, and then include the
header file like so:

#include <dspic-utility.h>

6.2 Macros

NOP () macro

Emits the NOP instruction; i.e., the “no operation” instruction.

RESET () macro

Emits the RESET instruction to force a software reset of the microcontroller.

CLRWDT () macro

Emits the CLRWDT instruction to clear the watchdog timer.

Chapter 7

X and Y Data Spaces

The dspic-utility.h header file defines two macros that tell the compiler to
allocate storage in the dsPIC X and Y data spaces.

7.1 Usage

To use these macros, you can use the —I compiler option to add the dsPIC Helper
Library source directory to the compiler command line, and then include the
header file like so:

#include <dspic-utility.h>

7.2 Macros

XSPACE macro

Expands to a compiler attribute to tell the compiler to allocate storage in the X
data space. For example, the following code will allocate the data for the array
in the X data space:

int16_t abcCoeffs[3] XSPACE;

YSPACE macro

Expands to a compiler attribute to tell the compiler to allocate storage in the Y
data space. For example, the following code will allocate the data for the array
in the Y data space:

int16_t controlHistory[3] YSPACE;

Chapter 8

16-bit CRC-CCITT

The dspic-utility.h header file defines two functions for calculating the 16-bit
CRC-CCITT value of a stream of bytes.

These functions are based on an article by Joe Geluso, originally located at
http://www.joegeluso.com/software/articles/ccitt.htm. Unfortunately,
it seems that that site no longer exists, but a copy of the article can be found
in the Wayback Machine at http://web.archive.org/web/20071229021252/
http://www.joegeluso.com/software/articles/ccitt.htm.

8.1 Usage

To use these functions, you can use the -I compiler option to add the dsPIC
Helper Library source directory to the compiler command line, and then include
the header file like so:

#include <crc-ccitt.h>

8.2 Functions

uint16_t crc_ccitt(uintl16_t crc, char byte) function

Call this function with the first byte in the stream, using an initial crc value of
CRC_CCITT_INITIAL_VALUE. The function returns the crc value to use in the
call for the next byte in the stream. Once all the bytes have been processed,
call crc_ccitt_normalize() to retrieve the actual CRC value.

uint16_t crc_ccitt_normalize(uintl6_t crc) function

Once all the bytes have been processed, call this function with crc set to the
last value returned by crc_ccitt() to retrieve the actual CRC value.

10

8.3 Example

Here’s a simple example that calculates the 16-bit CRC-CCITT value for the
string "123456789". A call to test () will return value 0xE5CC:
#include <crc-ccitt.h>

uint16_t test(void)

{
const char* str = "123456789";
uintl16_t crc = CRC_CCITT_INITIAL_VALUE;
while (*str)
crc = crc_ccitt(crc, *str++);
return crc_ccitt_normalize(crc);
}

11

Index

bool, 4
Boolean type, 4
building from source, 3

CLI(), 6

CLRWDT, 8

CLRWDTQ), 8

crc_ccitt(), 10
CRC_CCITT_INITIAL_VALUE, 10
crc_ccitt_normalize(), 10

DISI, 6, 7
DISI_CLEARQ), 7
DISI_MAXQ), 7
DISI_SETQ), 6
DISICNT, 7

false, 4

INT16_MAX, 5
INT16_MIN, 5
int16_t, 5
int32_t, 5
int64_t, 5
int8_t, 5

integer types, 5
interrupt macros, 6

library types, 3

NOP, 8
NOPQ), 8

RESET, 8
RESET(), 8

SET_CPU_IPL_MAXQ), 6
STI(O), 6

12

true, 4

uintl6_t, 5
uint32_t, 5
uint64_t, 5
uint8_t, 5

xmemory, 9
XSPACE, 9

ymemory, 9
YSPACE, 9

